PFAS removal via combination of adsorption on highly selective fluoropolymers and ultrafiltration© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (12/2024)
Per- and polyfluoroalkyl substances (PFAS) are a group of several thousand chemicals that are used in a wide range of industrial applications and consumer product (GlĂĽge et al. 2020). The versatile use of PFAS can be credited to the strength of the carbon-fluorine bonds which lead to high thermal and chemical stability and the ability to reduce surface tension (Meegoda et al. 2020).
Is an Effective Recovery of Heavy Metals from Industrial Effluents Feasible?© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2016)
Metallic elements and their compounds represent, depending on their concentration and bioavailability, a potential hazard to the health of humans, animals, plants and other living organisms. Large volumes of water contaminated with heavy metals or radioactive elements are generated e.g. during mining processes or industrial productions. In general, legal limits are low and strict to ensure purifying of wastewater.
Sewage Sludge Treatment in Europe – an Overview© ThomĂ©-Kozmiensky Verlag GmbH (10/2012)
With the implementation of the Urban Waste Water Treatment Directive 91/271/EEC, municipal sludge production has increased steadily in the EU during the last decade, although reduced water consumption and increased sludge treatment in some memberstates may have caused a stagnation or even slight decrease in sludge production (e.g. Germany, Austria, Sweden). Based on data provided to the European Commission for the 2002 – 2006 period, about 9.7 million Mg sludge solids are produced in the EU each year, 8.7 million Mg in EU-15 and an additional 1.0 million Mg in the new member states. Nearly 70 % of the total sludge mass is produced in Germany, UK, Italy, Spain and France. Until 2020, annual EU sludge production is expected to increase by 30 % up to 13 million Mg dried solids.
Pressure of Urbanisation and a Sustainable Sanitation Infrastructure:
Experiences with a Research-Driven Planning Method in Northern Namibia© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (9/2012)
Improvements in sanitation infrastructure in developing countries are of major importance. CuveWaters, a research project working in the north of Namibia, is piloting decentralised technologies for water and sanitation. Technologically sophisticated concepts can easily clash with users’ needs and everyday behaviour. There is not always a shared understanding of planning and maintenance. A demand-responsive approach has therefore been developed. It aims to support the planning and implementation process and to include stakeholders prior to intervention, thus allowing mutual learning as a basis for a sustainable transformation process in urban areas. This paper discusses method development, empirical application and results.
Sustainable MBR Application by Mechanical Membrane Cleaning© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (9/2011)
A non-chemical, mechanical cleaning process has been developed, in which granulates (particles) are added to the activated sludge in order to effect a continuous abrasion of the fouling layer.
Toray Membrane Europe AG© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (9/2011)
Successfully Tested the Process Combination of Ultrafiltration and Powdered Activated Carbon for Advanced Wastewater Treatment in Lab Scale
Interview: Membrane technology under discussion© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (9/2011)
The Institutes for Environmental Engineering (ISA) and for Chemical Process Engineering (AVT) of RWTH Aachen University together with the International Water Association (IWA) this year arrange the 6th IWA Specialist Conference on Membrane Technology for Water & Wastewater Treatment, an international forum for experts with about 140 lectures on the current status of research and development in membrane technology, Prof. Dr. Johannes Pinnekamp, director of the ISA, and Christine Ziegler of gwf-Wasser|Abwasser talked about the orientation and significance of the event and the major applications of membrane technology in the field of water and wastewater treatment.
Fate of Pharmaceuticals during Wastewater Treatment by a Membrane Bioreactor© DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH (9/2011)
This study provides a comprehensive insight into the levels and fate of nine commonly used pharmaceuticals (amitriptyline, atenolol, gemfi brozil, ibuprofen, ketoprofen, metformin, naproxen, paracetamol and simvastatin) through a full-scale membrane bioreactor (MBR) in New South Wales, Australia. Seven out of the nine studied pharmaceuticals were detected in the raw sewage with average concentrations in the range of 1.29– 33.3 μg.L–1, while gemfi brozil and simvastatin were below the analytical detection limit (1 ng.L–1). The MBR consistently achieved high removal effi ciencies of the detected pharmaceuticals, in the range of 77.2–99.9 %. A mass-balance showed that sorption to biomass was the dominant removal mechanism for amitriptyline while biodegradation/ transformation was responsible for removing all other pharmaceuticals. This study revealed that log D (Log Kow corrected for ionisation at the ambient pH) provides an effective estimation of the sorption capacity of these pharmaceuticals to biomass.