Interrelationships between pre-processing and subsequent procedures in the recycling of lithium-ion batteries
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The recycling of lithium-ion batteries is currently a very present topic in the field of research but also in the industry. New developments for the recovery of valuable metals from spent LIBs indicate a clear trend towards hydrometallurgical concepts. In this context, especially the pre-treatment plays an essential role.

Oxide-based lithium solid-state batteries from a recycling perspective
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Access to cheap and clean energy is key to our society's prosperity (Smalley, 2005). Therefore, electrochemical energy conversion and storage technologies are paramount for the energy transition to combat climate change. Ever since the commercialization of lithium-ion batteries (LIBs) by Sony in the 1990s (Nagaura 1990), LIBs have proven to be reliable and efficient in terms of lifetime and energy as well as power density (Janek & Zeier 2016). LIBs with intercalation cathode active material (CAM), liquid electrolyte, and graphite anode have dominated the battery market since their introduction.

FuLIBatteR – Future Lithium-Ion Battery Recycling for Recovery of Critical Raw Materials
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Global crises, like the Sars-CoV-2 pandemic, and dependency on the economic situation on raw material markets, as well as unexpected issues in global supply chains, such as the Suez Canal obstruction by a large container ship, intensify the efforts of local production and consequently, of sufficient raw material supply as well as regional solutions for recycling. Unfortunately, the raw materials for producing our daily life goods and things for saving the living standard are not evenly distributed worldwide (European Commission, 2022; Olivetti, Gaustad, & Fu, 2017).

Assessing the Raw Material Availability in the Circular Economy of Lithium-Ion Traction Batteries
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Political efforts at the federal and European level are directed against climate change. Industries with high pollutant emissions are coming under increasing regulatory pressure due to stricter provisions in legislation. These regulations are a major driver for the increasing degree of electrification in the vehicle market (Pischinger & Seiffert 2016, Korthauer 2013). By using renewable energy sources to generate electricity, road transport can not only be locally emission free, but also without the consumption of fossil raw materials.

Storage facility private households: Utilizing unexploited potential
© Wasteconsult International (5/2017)
Electrical and electronic equipment that contains private data, such as mobile phones or notebooks, is often stored in private households. Owners hesitate to recycle these devices, as they fear for the safety of their data.

Plastics Recycling and Energy Recovery Activities in Poland – Current Status and Development Prospects –
© ThomĂ©-Kozmiensky Verlag GmbH (9/2016)
The waste disposal system in Poland is one of the least advanced in Europe. Despite great efforts over the last 20 years municipal waste landfilling has only reduced from 95 percent in 1991 to 73 percent in 2010. This still means that millions of tonnes of post-consumer waste continue to be landfilled.

Fully Automated Sorting Plant for Municipal Solid Waste in Oslo with Recovery of Metals, Plastics, Paper and Refuse Derived Fuel
© ThomĂ©-Kozmiensky Verlag GmbH (9/2016)
In order to treat household waste Romerike Avfallsforedling (ROAF) located in Skedsmorkorset north of Oslo, Norway required the installation of a mechanical Treatment facility to process 40,000 tpa. Together with a Norwegian based technical consultancy Mepex and German based technical consultancy EUG the project was tendered and the plant build against a technical specification. In 2013 the project was awarded to Stadler Anlagenbau and since April 2014 the plant is in operation with an hourly throughput of thirty tons. The input waste contains specific green coloured bags containing food waste which is collected together with the residual waste from the households. The process recovers successfully the green food bags before the remaining waste is mechanically pre-treated and screened to isolate a polymer rich fraction which is then fully segregated via NIR technology in to target polymers prior to fully automated product baling. Recoverable Fibre is optically targeted as well as ferrous and non-ferrous metals. All food waste is transported off site for further biological treatment and the remaining residual waste leaves site for thermal recovery. In 2015 the plant has been successfully upgraded to forty tons per hour and remains fully automated including material baling.

High efficient recycling route of WEEE
© IWARU, FH MĂĽnster (2/2015)
A novel Pyrometallurgical recycling route is being designed to recycle complex metallic materials containing plastics such as waste electric and electronic equipment (WEEE). The new proposed methodology overcomes huge challenges like improved recovery of valuable metals, better control of hazardous substances, improved process control and recycling capacity. The recycling process for E-Scrap would be developed in such way that no waste would be obtained and all products and byproducts could be saleable materials.

In-Situ-Remediation of Pb/Zn Contaminated Sites Infl uenced by Mining and Processing
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2014)
Worldwide many sites are presently influenced by mining and processing activities. The huge amounts of moved and treated materials have led to considerable flows of wastes and emissions. Alongside the many advantages of processed ores to our society, adverse effects in nature and risks for the environment and human health are observed.

Investigated for the First Time: The Recycling Chain of Waste Electrical and Electronic Equipment in an Entire German State
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2014)
1,730,794t of electrical and electronic equipment (EEE) were brought on the German market in 2010. 722,567t of waste electrical and electronic equipment (WEEE) were collected from private households but only about 1.1% of those were reused.

 1  2  3 . >
Username:

Password:

 Keep me signed in

Forgot your password?