A novel approach to environmental cleanup of inland water courses
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Despite growing awareness and improving practices, littering is a worldwide challenge with catastrophic impact on the ecosystem. Inland waters in particular represent one of the main sources of pollution for the oceans. Detecting and retrieving this waste when still in rivers is an effective and efficient way to remediate the environment before the damage spreads over large areas. Implementing barriers faces a range of technical and economic challenges, leading to long and complex project developments. For this reason, the Italian company Mold S.r.l. decided to adopt a life-cycle perspective to study potential projects with their innovative barrier River Cleaning system and focus on the most impactful. In this paper we present LCA results done on exemplary regions and derive the learnings and criteria for future market developments of the system, linking thus life-cycle thinking and business development.

Recycling potential of recycled carbon fibers used in textile concrete from a technical and environmental point of view
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
As an important element in construction industry, cement production caused alone 2 % of total greenhouse gas emissions in Germany in 2017 and global average was even with a greater value, 8 % (WWF 2019). Considering the great impact of construction industry on the environment, Fiber reinforcement (carbon or glass) is seen as a meaningful alternative to steel reinforcement in the production of concrete. Due to their low weight, high strength and lifetime, carbon fibers have been increasingly used in construction industry. On the one hand, the use of CF reinforced concrete enables great amount of resource savings compared to conventional concrete, specifically steel reinforced concrete (Böhm et al. 2018). On the other hand, CFs have some disadvantages, such as high cost, energy intensive production process and challenging end-of-life (EOL) handling (Zhang et al. 2020).

Performance of European biogas plants towards methane emissions
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Biogas or biomethane, resulting from the biological treatment of organic matter by anaerobic digestion, is a renewable energy source used for electricity production, heating and in transportation and can substitute fossil gas. Therefore, biogas production is described as a sustainable strategy for reducing anthropogenic greenhouse gases (GHG). However, the positive environmental impact depends in particular on emissions that might occur within the biogas production and utilization chain. Although numerous scientific studies investigated CH4 emissions from biogas plants, there is still a lack of reliable and representative emission data. As stated in the United Nations Framework Convention on Climate Change, the member countries are obliged to report their national GHG inventories according to the Intergovernmental Panel on Climate Change (IPCC) guidelines.

On the road to 2050: The path to achieving a circular economy for mobility and renewable energy
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Climate change is one of the biggest crises humanity is facing at this time (Zwane E. M. 2019). Two of the largest emitters of greenhouse gas (GHG) emissions are the mobility (14% of global GHG emissions in 2018) and energy (34%) sector (Lamb et al. 2021), which require a major shift towards renewable energy and alternative fuel systems to succesfully contribute to GHG emission goals (O’Neill et al. 2018). However, this transition comes with its own set of challenges, in particular an increased resource intensity, its dependence on critical minerals and metals, as well as sustainability challenges in the technologies’ supply chains (Mancini & Nuss 2020, Wang et al. 2020). These challenges highlight the need for more sustainable resource management from mining, to consumption, to reuse and recycling, and progress towards a clean and circular economy (Smol et al. 2020).

Metrology for the Recycling of Technology Critical Elements to Support Europe’s Circular Economy
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Technology critical elements (TCEs) are vastly used throughout societal consumer products; including phones, computers, and renewable energy products, such as solar panels and wind turbines. These elements are deemed critical due to their economic importance and supply risk. However, dwindling supplies of TCEs threaten to disrupt such technology production worldwide, which is especially concerning given a recent drive for more renewable energy sources as part of the European Green Deal. Thus, there is a drive for the European Union (EU) to strive for a circular economy approach that reduces dependence on imports of such raw materials. To provide a more secure supply of TCEs, the EU promotes more efficient recycling through the Waste Framework Directive (2018/851/EU).

Experimental Methods to Assess the Thermal Stability of Reactive Chemical Waste stored in Large Waste Tanks
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The storage of a reactive chemical waste in large storage tanks can lead to a thermal explosion, as was the case recently in July 2021 at Currenta in Leverkusen-BĂĽrrig (Germany) (Currenta 2022). In addition to considerable property damage, 7 people were killed and 31 injured. Therefore, the thermal risk for the storage of reactive waste must be assessed in advance and appropriate risk-minimizing measures must be taken.

Analysis of different polypropylene waste bales – evaluation of the source material for polypropylene recycling
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
In 2020 Polypropylene (PP) accounted for almost 20% of the plastic consumption in Europe, making it the second most used plastic (Plastics Europe 2021). Due to the high volume of PP used as packaging material (Plastics Europe 2021), large amounts of PP waste are generated every year. Therefore, mechanical recycling of PP waste is a crucial step towards a circular economy. Although there are already some well-established recycling techniques, the lower quality of recyclates compared to virgin materials still poses an obstacle for their use in more demanding applications. Improvements of every step of the whole recycling value chain could solve this problem, with proper and more accurate sorting techniques being particularly crucial.

Sorting Based on Bits – The Technical Background of Digital Markers in the Context of High-Quality Recyclate Generation
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The entire plastics value chain is currently looking for new processes to produce high-quality recyclates. One measure is to add relevant product-specific information that can be retrieved during the sorting process. Digital watermarks are currently being discussed for this purpose. However, the basics of this technology are currently only known to a limited extent in the recycling industry. This paper first gives a brief overview of the theory and principles of digital watermarking. Next, the characteristics of watermarks are presented to improve the understanding of the strengths and limitations of this technology. Finally, the encoding process on physical products and the decoding process in sensor-based sorting are highlighted.

Mechanical short-term and long-term properties of PP recyclate blends
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
The amount of recycled material in new products should be increased in the next few years. By adding virgin material, the mechanical properties of the pure recyclate can be improved. In this work, 10 % and 40 % post-consumer recyclate was added to a virgin material and analyzed. Both raw materials were also tested. The short-term as well as the long-term properties decrease with increasing recyclate content. The recyclate has a higher influence on the young’s modulus, yield stress and slow crack growth resistance than on the notched impact toughness.

Estimation of Recycling Potential of Multilayer Films in Austria
© Lehrstuhl fĂĽr Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
It is impossible to imagine today’s society and economy without plastic and plastic packaging is in particular focus. Worldwide, 368 million tons of plastic were produced in 2019, of which 57.9 million tons in the European Union (EU). They account for more than a third of all plastic products in Europe and are particularly conspicuous because of their short lifespan and ubiquitous distribution in the environment worldwide. (Plastic Europe 2020) According to Eurostat, plastic packaging is accountable for 15.4 million tons or 177.4 kg of waste plastic packaging per citizen in 2019 (Eurostat 2021). Hence, the proliferation of plastic in all areas of life has become an increasingly visible issue and its impact on the environment is the subject of heated debate.

 1  2  3 . . . . >


 Keep me signed in

Forgot your password?